笔趣书屋

手机浏览器扫描二维码访问

第四十一章 中国剩余定理(第1页)

吴王阖闾在孙武和伍子胥的帮助下,带兵攻破楚国。

这是吴国极端冒险的一次行动,吴王阖闾被孙武非凡的军事才华所震惊。

而在阖闾眼里,孙武是一个一直喜欢那种算筹来回拨弄的人,似乎算筹从不离手。

阖闾一笑,既然这么爱计算,可以考考他的水平。

阖闾看了一个军队列队的变换,对孙武说:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”

意思是这个数字除以3余2,除以5余3,除以7余2,这个数等于多少。

孙武停滞了一下,飞快熟练的拨弄算筹,没一会儿回答:“23个。”

阖闾自己数了数士兵的个数,果然正确,吃惊的说:“你连看都不看,是怎么算出来的?”

孙武一边摆弄算筹,一边对阖闾说:“找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。”

阖闾看到孙武摆弄的算筹计算这些数字,一头雾水。

孙武继续说:“用15乘以2,用21乘以3,同理,用70乘以2,然后把三个乘积相加得到和233。”

阖闾看到孙武孩子熟练的拨弄着算筹,手速很快,阖闾都反应不过来。

孙武继续说道:“用233除以3,5,7三个数的最小公倍数105,得到余数23,即233除以105余数为23。

这个余数23就是符合条件的最小数。”

牛顿说过:一个例子比十个定理有效。

从这道题来看,立马就理解了剩余数学问题。

数学问题,很多看起来是棘手的问题,不用做剖析,直接就可以把它列出来,把这一切的本身就直接当做一个问题。

这样反而会快速的组件数学模型。

《孙子算经》的这个问题,就是一个直接列出来的问题,没有让这个不知其数去做一些更精细的模型来组建,而是直接提问,这样反而会找到这一类问题的归为一类。

然后遇到类似问题,就可以使用这类方法求解即可。

热门小说推荐
绝世天尊

绝世天尊

大道无情,以天地为棋盘,众生为弈子,茫茫大道,谁又能独善其身?...

强掠帝国

强掠帝国

都说隋唐有十几条好汉,而且各个英雄了得。大傻鸟挠挠鼻子,撇撇嘴从嘴角挤出一个字渣都说隋唐好汉的第一把交椅当属李元霸大傻鸟伸出中指向下,灰常鄙视长得像猴子有些畸形,大国泱泱难道没有个像样的,这样的人称第一是不是有些丢人呢?山中无老虎猴子称大王大傻鸟懒洋洋地说这话,寓意深远哪个朝代的美女最美?当然是大隋朝的女人最美了。别忘了还有千古一后萧美娘!嘿嘿,大傻鸟有非分之想什么?竟然不知道大傻鸟的含义,捏个慢慢想,这玩意儿不好解释。一张神弓一杆槊,大傻鸟横行天下,神挡杀神...

蜀汉的复兴

蜀汉的复兴

穿越了,成了关羽的孙子关彝。根据史书记载,作为穿越者,需要注意的是1,七年后蜀汉会亡国。2,蜀汉亡国时关家的仇人会找上门来血屠关氏一门。3,蜀汉开国功臣的第三代子孙基本都是废材。那么,废材们,请到我身边来,我们一起来复兴蜀汉吧!...

新妻上任:总裁欺人太深

新妻上任:总裁欺人太深

结婚三年,丈夫出轨,还带着小三登堂入室,家暴下药逼她签净身出户的离婚协议。她悲愤之下随手抓了个男人报复丈夫,一夜迷情,却不想自己睡的竟是C市跺跺脚都要抖三抖的大人物霍振廷!他用死缠烂打柔情蜜意将她已经死亡的冰冷的心重新捂得滚烫,可就在她准备牵他手时,他却留下重金转身与另一个女人订婚...

古神天下

古神天下

十万年前,古神是这片星域的掌控者,高高在上的他们,在星域古神界,移山填海,破碎虚空,只在一念之间,主宰着所有人的生死运道。十万年后,叶谦无意中穿越而来,意外获得神秘的紫金皇冠,得到惊天传承,从此战九霄,破万古,横扫诸神。...

每日热搜小说推荐